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Cognitive Tasks

Perception Reasoning Decision

What do I see or hear? What does it mean? What do I do?

Knowledge

✓ ✓

• Perception and integration of perceived information require reasoning

• Reasoning is application of logic to a model – reasoning is impossible without a model

• Probability theory is an extension of logic



Cognitive Tasks

Perception Reasoning Decision

What do I see or hear? What does it mean? What do I do?

Knowledge

✓ ✓

Alexa, who was the director of Avatar?

Why is this person asking this question?



Decision

Having updated its beliefs about reality, the robot is ready to make 
decisions and perform actions

Ø The robot needs to decide which action to 
perform next

Ø Actions are driven by goals

Ø Actions have preconditions

Ø Actions change the state of the world



Decision
Block World

A B C

A

B

C

Current State

On(A, Table),  FreeTop(A)

On(B, Table),  FreeTop(B)

On(C, Table),  FreeTop(C)

On(A, B)

On(B, C)

On(C, Table)

Goal State



Decision
Block World

A B C

A

B

C

Current State Goal State

On(A, B)

On(B, C)

On(C, Table)

Operator

Move(X, Y)

Preconditions: 

On(A, Table),  FreeTop(A)

On(B, Table),  FreeTop(B)

On(C, Table),  FreeTop(C)

FreeTop(X)
FreeTop(Y)

Results: 

On(X, Y) = True
FreeTop(Y) = False



Decision
Block World

A B C

A

B

C

Current State Goal State

On(A, B)

On(B, C)

On(C, Table)

It would be great if we could make one move that would 
satisfy the goal conditions
If not, we can choose the move that satisfies the greatest 
number of goal conditions
Both move(A, B) and move(B, C) seem equally good



Decision
Block World

A

B C

A

B

C

Current State Goal State

On(A, B)

On(B, C)

On(C, Table)

Suppose, the robot chose Move(A, B)

Now it will be stuck – no move leads closer to the goal!

Greedy actions don’t always lead to the goal

The robot needs planning!



Decision
Block World – Planning Space

𝐴, 𝐵, 𝐶

𝐴
𝐵 , 𝐶

𝐶
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𝐵
𝐶
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𝐵
, 𝐴

𝐴
𝐶
𝐵

Move(A,B)

Move(B,C)

Move(C,A) Move(A,B)

Move(C,B)

Move(A,C)



Decision
Breadth-first search

𝐴, 𝐵, 𝐶
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𝐵
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𝐵
𝐶

𝐶
𝐵
, 𝐴

𝐴
𝐶
𝐵

Move(A,B)

Move(B,C)

Move(C,A) Move(A,B)

Move(C,B)

Move(A,C)

1 2 3 4 5 6

7 8 9 10 11

Breadth-first search will always find the shortest path to the goal



Decision
Depth-first search

𝐴, 𝐵, 𝐶
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Move(A,B)

Move(B,C)

Move(C,A) Move(A,B)

Move(C,B)

Move(A,C)

1 3 5 7 9

2 4 6 8 10

Depth-first search will always find the goal, but not necessarily the shortest path



Decision
Directed search

𝐴, 𝐵, 𝐶

𝐴
𝐵 , 𝐶

𝐶
𝐴
𝐵

𝐵
𝐴
, 𝐶

𝐶
𝐵
𝐴

𝐴
𝐶
, 𝐵

𝐵
𝐴
𝐶

𝐶
𝐴 , 𝐵

𝐵
𝐶
𝐴

𝐵
𝐶 , 𝐴

𝐴
𝐵
𝐶

𝐶
𝐵
, 𝐴
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Move(A,B)

Move(B,C)

Move(C,A) Move(A,B)

Move(C,B)

Move(A,C)

1 3

2 4

In this example, the value of the state is the number H(s) of satisfied goal conditions
You will learn about various search algorithms in this course

H = 1

H = 2 H = 1 H = 1 H = 1 H = 2 H = 1

H = 1
H = 3



Decision
Planning

• Given a description of the world
• e.g., where things are in a floor map

• And a set of potential actions (operators)
• e.g., pick up an object, move to the next room, …

• And a goal to achieve
• e.g., fetch me my iPad

• Find a sequence of actions to achieve the goal
• e.g., move to study, go to desk, pick up iPad, …



Decision
Planning as problem solving

states

goal

operators

• The states, including the goal are represented as logical 
formulas, e.g., On(A,B) ⋀ On(B,C)

• Operators change states; they have preconditions and cost

• A plan is a sequence of operator applications that leads the goal

• We want to minimize the cost of the plan

• A good estimate of the cost of the plan going through state S is 
the cost of getting to S from the start plus the size of the 
difference between the logical representation of the goal and 
the logical representation of S (means-ends analysis)

ℎ 𝑠 = 𝐶𝑜𝑠𝑡 𝑆𝑡𝑎𝑟𝑡, 𝑠 + 𝐷𝑖𝑓𝑓(𝑠, 𝐺𝑜𝑎𝑙)



Decision
Shakey the Robot

Probably the most influential early work in 
integrating perception, reasoning and decision was 
Shakey the Robot based on  STRIPS – Stanford 
Research Institute Problem Solver (1969-72)

Let’s watch the video





Decision
Shakey the Robot and STRIPS

• Shakey pushed boxes between rooms using cameras 
and range finders for perception

• It represented the state of the world as logical formulas

• It used logic to infer what was true in its world

• For planning, it computed the difference between the 
goal state and the current state of the world and 
searched for the operators that would reduce that 
difference (means-ends analysis)

• Shakey may seem primitive now, but it a direct ancestor 
of today’s robots and self-driving vehicles





Decision
Decisions in an uncertain world

Win $10 Win $20

Price $2 Price $3

Two lottery tickets Which one would you buy?



Decision
Decisions in an uncertain world

Win $10 Win $20

Price $2 Price $3

Two lottery tickets Which one would you buy?

It depends on your estimates of the 
probabilities of winning for each ticket

Probability p1 Probability p2

Ticket value = expected win – expected cost

𝑉 𝑡7 = 10 ∗ 𝑝7 − 2 𝑉 𝑡> = 20 ∗ 𝑝> − 3

p1 p2 V1 V2

.5 .5 3 7

.1 .1 -1 -1
.25 .15 .5 0



Decision
The Monty Hall Problem

Suppose you're on a game show, and you're given the 
choice of three doors:

Behind one door is a car; behind the others, goats. You 
pick a door, say No. 1, and the host, who knows what's 
behind the doors, opens another door, say No. 3, which 
has a goat.

He then says to you, "Do you want to pick door No. 2?”

Is it to your advantage to switch your choice?

Decisions under uncertainty can be tricky



Decision
The Monty Hall Problem

Ci – car behind door i; P(C1) = P(C2) even after door 3 is opened

Xi – the player chooses door i; P(X1) = 1 – the player chose door 1

Hi – the host opens door i

q = P(H3 | X1, C1) – the probability of the host opening door 3 given 
the player chose door 1 and the car is behind 
door 1

P(H3 | X1, C2) = 1 – the host has no choice

𝑃 𝐶> 𝑋7, 𝐻C =
𝑃(𝐶>, 𝑋7, 𝐻C)
𝑃(𝑋7, 𝐻C)

=
𝑃 𝐻C 𝑋7, 𝐶> ∗ 𝑃 𝑋7 ∗ 𝑃(𝐶>)

𝑃 𝑋7, 𝐻C, 𝐶7 + 𝑃 𝑋7, 𝐻C, 𝐶> + 𝑃 𝑋7, 𝐻C, 𝐶C
=

=
𝑃 𝐻C 𝑋7, 𝐶> ∗ 𝑃 𝑋7 ∗ 𝑃(𝐶>)

𝑃 𝐻C 𝑋7, 𝐶7 ∗ 𝑃 𝑋7 ∗ 𝑃 𝐶7 + 𝑃 𝐻C 𝑋7, 𝐶> ∗ 𝑃 𝑋7 ∗ 𝑃 𝐶>
=

1
𝑞 + 1



Decision
The Monty Hall Problem

Ci – car behind door i; P(C1) = P(C2) even after door 3 is opened

Xi – the player chooses door i; P(X1) = 1 – the player chose door 1

Hi – the host opens door i

q = P(H3 | X1, C1) – the probability of the host opening door 3 given 
the player chose door 1 and the car is behind 
door 1

P(H3 | X1, C2) = 1 – the host has no choice

𝑃 𝐶> 𝑋7, 𝐻C =
𝑃(𝐶>, 𝑋7, 𝐻C)
𝑃(𝑋7, 𝐻C)

=
𝑃 𝐻C 𝑋7, 𝐶> ∗ 𝑃 𝑋7 ∗ 𝑃(𝐶>)

𝑃 𝑋7, 𝐻C, 𝐶7 + 𝑃 𝑋7, 𝐻C, 𝐶> + 𝑃 𝑋7, 𝐻C, 𝐶C
=

=
𝑃 𝐻C 𝑋7, 𝐶> ∗ 𝑃 𝑋7 ∗ 𝑃(𝐶>)

𝑃 𝐻C 𝑋7, 𝐶7 ∗ 𝑃 𝑋7 ∗ 𝑃 𝐶7 + 𝑃 𝐻C 𝑋7, 𝐶> ∗ 𝑃 𝑋7 ∗ 𝑃 𝐶>
=

1
𝑞 + 1

ranges between ½ and 1
You cannot lose by switching



Decision
The Monty Hall Problem

The point of this example is that decisions require 
models
In this case, we needed to model the host’s behavior
We did it with the parameter q – the probability of 
opening the right door when the host has a choice

It turns out that switching is advantageous at all values of q but this may not be the 
case if switching had a cost

If we don’t know the value of q, we could assume that it is uniformly distributed 
between 0 and 1 and use it to compute the expected value of switching which is 
ln(2)≈.693



Decision
Planning in an uncertain world

In the real world, actions do not always lead to the expected results

When a soccer player hits the ball, it may or may not land where intended
The ball may also be unexpectedly intercepted by an opponent

Plans in the real world need to maximize the probability of reaching the 
goal while minimizing the expected cost

This is complicated because we cannot take into account every 
contingency and have to accept approximate solutions

These approximations sometimes lead to errors which are unavoidable



Decision
Plans as Schemas

If we had to perform means-ends analysis every moment of our lives, we would be in real 
trouble:

I need to go to New York City, where should I put my right foot in my next step?

When we need to go from Pittsburgh to New York, first, we decide if we will fly or drive

If we decide to fly, we decide how to get to the airport: to take the bus, to drive or to ask a 
friend for a ride

We don’t need much planning to get to the bus stop – we know where it is and how to get 
there



Decision
Scripts

Situations such as restaurants are even more stereotypical 
and require almost no reasoning

When we walk into a restaurant, we don’t plan how we are 
going to get the food from the kitchen

We know the restaurant script: sitting, getting menus, ordering, waiting, eating, and 
paying

We don’t try to figure out why a smiling woman with a glossy booklet is approaching 
our table. We know it is a waitress bringing the menu.



Decision
We have schemas for most common events

Plane-travel(Traveler=X, Origin=L1, Destination=L2)
Preconditions: Airport(L1)

Airport(L2)
Distance(L1, L2) > 250km

Goal: At(X,L2)
Events: Select-flight(Flight=F, Origin=L1, Destination=L2)

Buy-ticket(Traveler=X, Flight=F)
Travel(Traveler=X, Destination=L1)
Get-gate-info(Airport=L1, Flight=F, Gate=G)
Security-check(Traveler=X, Airport=L1)
Travel(Traveler=X, Destination=G)
…

The sequence of events is not always linear – it may be a graph; some events are optional



Decision How do we apply schemas?

Suppose, our robot needs to go from CMU to Rockefeller Center in New York City

It may have millions operators/schemas at various levels of abstractions

It seems reasonable to index schemas by their goals

The first goal is to plan the trip

The Plan-Travel(Origin=X, Destination=Y) schema will select the best mode of 
transportation between X and Y and invoke a more specific schema such as Plane-travel.

Experienced travelers between Pittsburgh and New York may have very specific schemas –
more specific schemas for the goal are tried first, before the more general ones

Many elements of the plan such as how to get from LaGuardia to Rockefeller Center may 
be left un-instantiated until execution time when more information is available



Decision
We use schemas to understand events

We may hear:

Did Bob fly?

Bob bought a Delta ticket to LaGuardia. He arrived in New York in time for dinner. 



Decision
We use schemas to understand events

We may hear:

Bob bought a Delta ticket to LaGuardia. He arrived in New York in time for dinner. 

Did Bob fly?

Of course, he did. But how do we know it?

Delta is an airline; LaGuardia is an airport in New York; Bob bought an airline ticket

This fits the Plane-travel schema

We instantiate the variables and assume that the other events in the schema also happened



Cognitive Tasks Require a lot of Knowledge

Perception Reasoning Decision

Knowledge

✓ ✓ ✓

What kinds of knowledge does a robot need to perform cognitive tasks?

Knowledge includes models and facts
that a child is younger than its parents, but not by 100 years
that cows have no wings and tend to weigh over 400lb
that President Xi is about 60 and was born somewhere in China

and many other things most of which are approximate and uncertain



Knowledge
Knowledge Graphs

• Knowledge representation was the central concern of AI in 1970-80

• The success of statistical Machine Learning eclipsed this concern for a while

• But now it is coming back, most frequently in the form of Knowledge Graphs

Ontology defines and connects 
concepts, their properties and 
relations (e.g., *person)

Instances (e.g., my friend Bob)



Knowledge
Ontologies describe concepts

*person

*politician*Korean
person

*President 
of Korea

is-a

Concepts have parents (possibly multiple) and attributes

Attributes are either other concepts or literals (e.g., strings, numbers)

*person
age:              *number
first-name:  *string
last-name:   *string
nationality: *country
spouse:        *person
….

*Plane-travel
Traveler:       *person
Origin:           *airport
Destination: *airport
Flight:            *flight

Attributes specify the allowed values for concept instances
(e.g., nationality must be an instance of a country)



Knowledge
Instances represent real objects and facts

*person

*politician*Korean
person

*President 
of Korea

is-a

instance-of

Last-name: Kim
First-name: Jae-in
Age: 66

Last-name: Kim
First-name: Jung-sook
Age: 65

*marriage

There have been many attempts to build extensive universal 
knowledge graphs, none of them universally accepted

More successful are domain-specific knowledge graphs 
such as medical terms

Every project ends up developing its own knowledge 
graph, partially based on some existing ones



Knowledge

How old is Vladimir Putin?

Where was he born?

Probably in his mid-60s

Most likely in St. Petersburg but maybe 
somewhere  else in Russia

Most of what we know is to various degrees uncertain, yet we can function rather well

There are two main problems with existing Knowledge Graphs:
• Representation of uncertainty
• Representation of dependencies among knowledge elements



Knowledge
Belief Graphs represent what the robot (the system) believes to be true in the world

Uncertain knowledge about node attributes is represented as probability distributions

Belief Graphs consist of 3 interconnected spaces: Ontological, Instance and Evidence

Person

P55

Ontological space
(concepts)

age
Default demographic distribution of age

age
{(20, 25): .1, (25, 30): .8, (30, 35): .1}

name {“Peter”: .7, “Bob”: .2, “*other”: .1}

Evidence space
(mentions)

“Peter is in his late 20s”

Instance space

Open sets

Belief Graphs



Knowledge
Dependencies among knowledge elements are captured by factors

A factor computes the likelihood that a relation is true

Marriage
Spouse1 Spouse2

Marriage certificateage age

X YZ {“yes”, “no”}

F1

F2

P(Marriage = True | x, y, z) ∝ 𝐹1 𝑧 ∗ 𝐹2(𝑥, 𝑦)

𝐹1(𝑧) = J.9, 𝑖𝑓 𝑧 = ”𝑦𝑒𝑠”
.1, 𝑖𝑓 𝑧 = ”𝑛𝑜”

𝐹2(𝑥, 𝑦) = P
.80, 𝑖𝑓 𝑥 − 𝑦 ≤ 10
.15, 𝑖𝑓 10 < 𝑥 − 𝑦 ≤ 20
.05, 𝑖𝑓 20 < 𝑥 − 𝑦

Factor graphs for belief propagation are constructed from relation factors

Naïve Factorization 
Assumption



Cognitive Tasks

Perception Reasoning Decision

Knowledge

✓ ✓ ✓
✓

What about learning? How do we acquire the necessary knowledge?



Learning

Perception Reasoning Decision

Knowledge

✓ ✓ ✓
✓

As humans, we learn from a combination of personal experience and communication with 
other humans

Both are necessary – without communicating to other humans we would be smart monkeys

Natural language is our key instrument for knowledge acquisition

Over time, we build elaborate long-term knowledge structures and modify them as we 
acquire new information



Compare this to the “End-to-End” approach

With enough inputs and outputs, a neural 
net can learn the mapping – no models or 
knowledge needed!

• The neural net architecture is an implicit model but not a causal one
• Training such a model (optimizing parameters) requires astronomical amounts of data 

and computing power
• These systems are completely opaque, involve no reasoning and cannot be used for 

explanation or causality

A dog has an elaborate neural net and can be 
trained to perform very useful tasks
What do we learn as a result?



Statistical ML is a great tool

Perception Reasoning Decision

Knowledge

✓ ✓ ✓
✓

• Statistical ML is a great tool to refine the parameters of our models

• It is not a substitute for a model

• A neural net cannot explain its decisions which is not acceptable in most applications

• Try to give advice to a neural net – you cannot!

• The AI community is beginning to shift from purely statistical ML to more knowledge-
based methods


